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THE LEBESGUE INTEGRAL 

Lebesgue integration is an alternative way of defining the integral in terms of measure theory that is 

used to inte grate a much broader class of functions than the Riemann integral or even the Riemann-

Stieltjes integral. The idea behind the Lebesgue integral is that instead of approximating the total area by 

dividing it into vertical strips, one approximates the total area by dividing it into horizontal strips.  

3.1 The shortcomings of the Riemann integral suggested the further investigations in the theory of 

integration. We give a resume of the Riemann Integral first. 

Let f be a bounded real- valued function on the interval [a, b] and let  

 a =  ξ
0 
< ξ

1 
< ⋯ < ξ

n 
= b      

Be a partition of  [a, b]. Then for each partition we define the sums  

S = ∑ (ξ
i

n
i=1 − ξ

i−1 
)Mi    

and s = ∑ (ξ
i

n
i=1 − ξ

i−1 
)mi  

where  

Mi = Sup
ξi−1 <x<ξi 

f(x) , mi = inf
ξi−1 <x<ξi 

f(x) 

We then define the upper Riemann integral of f by  

R∫ f(x)dx
b

a
 = inf S 

With the infimum taken over all possible subdivisions of  [a, b]. 

Similarly, we define the lower integral  

R∫ f(x)dx
b

a
 = sup s. 

The upper integral is always at least as large as the lower integral, and if the two are equal we say that f 

is Riemann integrable and call this common value the Riemann integral of f. We shall denote it by 

R∫ f(x)
b

a
  

To distinguish it from the Lebesgue integral, which we shall consider later. 

By a step function we mean a function ψ which has the form  

ψ(x) = ci , ξi−1 < x < ξ
i 
 

for some subdivision of [a, b] and some set of constants ci . 

https://brilliant.org/wiki/measure-theory/
https://brilliant.org/wiki/riemann-integral/
https://brilliant.org/wiki/riemann-stieltjes-integral/
https://brilliant.org/wiki/riemann-stieltjes-integral/
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The integral of  ψ(x)  is defined by  

R∫ψ(x)

b

a

dx =  ∑ci

n

i=1

(ξ
i
− ξ

i−1
). 

With this in mind we see that  

 R∫ f(x)dx
b

a
 = inf ∫ ψ(x)

b

a
dx 

for all step function ψ(x) ≥ f(x). 

Similarly,  

R∫ f(x)dx
b

a
 = sup ∫ ϕ(x)

b

a
dx 

for all step functions ϕ(x) ≤ f(x). 

3.2. Example: If  

f(x) = {
1 if x is rational
o if x irrational

  

then  R∫ f(x)dx
b

a
= b − a  and R∫ f(x)dx

b

a
= 0. 

Thus we see that f(x) is not integrable in the Riemann sense. 

3.3. The Lebesgue Integral of a bounded function over a set of finite measure 

The example we have cited just now shows some of shortcomings of the Riemann integral. In particular, 

we would like a function which is 1 in measurable set and zero elsewhere to be integrable and have its 

integral the measure of the set. 

The function χ
E
 defined by 

χ
E
= {

1 ϵ  E
o x ∉ E

 

is called the characteristic function on E. A linear combination  

                                             ϕ(x) =  ∑ ai
n
i=1 χ

E
(x) 

is called a simple function if the sets Ei  are measurable. This representation for ϕ is not unique. 

However,  we note that a function ϕ is simple if and only if it is measurable and assume only a finite 

number of values. If ϕ is simple function and [a1 , a2 ,…, an ] the set of non- zero values of ϕ , then  

ϕ = ∑aiχAi 
 ,  

where Ai = { {x| ϕ(x) = ai}  . This representation for 𝛟 is called the canonical representation and 

it is characterized by the fact that the Ai  are disjoint and the ai  distinct and non- zero. 

If ϕ vanishes outside a set of finite measure, we define the integral ϕ by  

∫ϕ(x)dx =  ∑aimAi

n

i=1
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when ϕ has the canonical representation ϕ = ∑ aiχAi 
n
i=1  . we sometimes abbreviate the expression for 

this integral to ∫ϕ. If E is any measurable set, we define ∫∅
𝐸

 =∫ϕ. χE 

It is often convenient to use representations which are not canonical, and the following lemma is useful. 

3.4. Lemma.   If E1, E2,…,En are disjoint measurable subset of  E then every linear combination  

ϕ =  ∑ ciχEi
n
i=1   

With real coefficients c1, c2,…, cn is a simple function and  

∫ϕ = ∑ cimEi
n
i=1  . 

Proof. It is clear that ϕ is a simple function. Let a1, a2,…, an denote the non- zero real number in ϕ(E). 

For each j = 1, 2, …, n . Let  

Aj = ⋃ Ei
ci=aj

 

Then we have  Aj = ϕ
−1(aj) = {x|ϕ(x) = aj}     

and the canonical representation  

ϕ =∑ajχAj 

n

j=1

 

Consequently, we obtain 

 ∫ϕ = ∑ ajmAj
n
j=1   

                               = ∑ ajm
n
j=1      [⋃ Ei]ci=aj

 

                              = ∑ aj  ∑ mEi
n
ci=aj

n
j=1    ( Since Ei are disjoint, additivity of measures applies ) 

∑cjmEi

n

j=1

 

This completes the proof of the theorem.  

 3.5. Theorem. Let ϕ and ψ be simple functions which vanish outside a set of finite measure. Then  

∫(aϕ + bψ) = a∫ϕ + b∫ψ  and, if ϕ ≥  ψ a.e., then ∫ϕ  ≥  ∫ψ  

Proof.  Let {Ai} and {Bi} be the sets which occur in the canonical representations of  ϕ and ψ. Let A0 

and B0 be the sets where ϕ and ψ are zero. Then the sets Ek  obtained  by taking all the intersection  Ai ∩

Bj form a finite disjoint collection of measurable sets, and we write  

ϕ =  ∑akχ
Ek

N

k=1
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        ψ = ∑bkχ
Ek

N

k=1

 

and so  

aϕ + bψ = a ∑akχ
Ek
+ b∑bkχ

Ek

N

k=1

N

k=1

 

                      = ∑aakχ
Ek

N

k=1

+ ∑bkχ
Ek

N

k=1

 

            = ∑(aak + bbk)χEk

N

k=1

 

Therefore  

aϕ + bψ = ∑(aak + bbk)mEk

N

k=1

 

                             = a ∑akmEk + b∑bkmEk

N

k=1

N

k=1

 

 = a∫ϕ + b∫ψ . 

To prove the second statement, we note that 

∫ϕ−∫ψ = ∫ϕ − ψ  ≥ 0 , 

Since the integral of a simple function which is greater than or equal to zero almost everywhere is 

non- negative by the definition of the integral. 

3.6. Remark.  We know that for any simple function ϕ we have  

 ϕ =  ∑aiχEi

N

k=1

 

Suppose that this representation is neither canonical nor the sets Ei’s are disjoint. Then using the fact 

that characteristics functions are always simple function we observe that  

∫ϕ = ∫a1χ
E1
+∫a2χ

E2
+…+∫anχ

En
 

= a1∫ χE1
+ a2∫ χE2

 +⋯+ an∫ χEn
 

= a1mE1 + a2mE2 +⋯+ anmEn 



56 Measure and Integration Theory 

=∑aimEi

N

k=1

 

Hence for any representation of  ϕ, we have  

∫ϕ =∑aimEi

N

k=1

 

Let f be a bounded real valued function and E be a measurable set of finite measure. By analogy with the 

Riemann integral we consider for simple functions ϕ and ψ the numbers  

inf
ψ≥f
∫ψ

 

E

 

and  

sup
ϕ≤f

 

∫ϕ

 

E

 

and ask when these two numbers are equal. The answer is given by the following proposition . 

3.7. Theorem.  Let f be defined and bounded on a measurable set E with mE finite. In order that  

inf
f≤ψ
∫ψ

 

E

(x)dx = sup
f≥ψ

∫ψ(x)dx

 

E

   

For all simple functions ϕ and ψ, it is necessary and sufficient that f be measurable. 

Proof.  Let f be bounded by M and suppose that f is measurable. Then the sets  

                                     Ek = {x|
KM

n
≥ f(x) >

(K−1)M

n
} , −n ≤ K ≤ n , 

Are measurable, disjoint and have union E. Thus  

∑ mEk = mE

n

k=−n

 

The simple function defined by  

ψ
n
(x) =

M

n
∑ kχ

Ek
(x)

n

k=−n

 

and   

ϕn(x) =
M

n
∑ (k−1)χ

Ek

n

k=−n

(x) 

satisfy  

ϕn(x) ≤ f(x) ≤ ψ
n
(x) 
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Thus            inf ∫ ψ(x)dx ≤  ∫ ψ
n
(x)dx =  

M

n
∑ kmEk
n
k=−n

 

E
 

 

E
 

and            sup ∫ ϕ(x)dx ≥  ∫ ϕn(x)dx =   
M

n
∑ (k − 1)mn
k=−n

 

E
Ek  

 

E
 

hence     0 ≤ inf ∫ ψ(x)dx − sup∫ ϕ(x)dx ≤
 

E

 

E

M

n
∑ mEk
n
k=−n =

M

n
mE . 

Since n is arbitrary we have  

inf∫ψ(x)dx − sup∫ϕ(x)dx = 0 ,

 

E

 

E

 

and the condition is sufficient.  

Suppose now that    inf
ψ≥f
∫ ψ(x)dx =  sup

ϕ≤f
∫ ϕ(x)dx .
 

E

 

E
 

Then given n there are simple functions ϕn and ψn such that  

ϕn(x) ≤ f(x) ≤ ψ
n
(x) 

And    (1)                  ∫ψ
n
(x)dx − ∫ϕn(x)dx <  

1

n
  

Then the functions                                                                ψ∗ = infψ
n
  

And                                                       ϕ∗ = supϕn 

Are measurable and                                                       ϕ∗(x) ≤ f(x) ≤  ψ∗(x) .  

Now the set  

Δ = {x|  ϕ∗(x) <  ψ∗(x)} 

is the union of the sets  

Δv = {x|  ϕ
∗(x) <  ψ∗(x) −

1
v}. 

But each  Δv is contained in the set {x|ϕn(x) < ψ
n
(x) −

1

v
} , and this latter set by (1) has measure less 

than  
v

n
 . Since n is arbitrary, mΔv = 0 and so mΔ = 0. Thus   ϕ∗ =   ψ∗ except on a set of measure zero, 

and   ϕ∗ = f except on a set of measure zero. Thus f is measurable and the condition is also necessary. 

 3.8. Definition.  If f is a bounded measurable function defined on a measurable set E with mE finite, we 

define the Lebesgue integral of f over E by  

∫ f(x)dx = inf∫ψ(x)

 

E

 

E

 

for all simple functions  ψ ≥ f . 

By previous theorem, this may also be defined as  
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∫ f(x)dx = sup∫ϕ(x)

 

E

 

E

 

for all simple functions ϕ ≤ f .  

We sometime write the integral as ∫ f
 

E
 . If E =[a,b] we write ∫ f

b

a
  instead of ∫ f

 

[a,b]
 . 

Definition and existence of the Lebesgue integral for bounded functions 

3.9. Definition.  Let F be a bounded function on E and let Ek be a subset of  E. Then we define M[f, Ek] 

and m[f, Ek] as  

M[f, Ek ] = l. u. b
xεEk

f(x) 

m[f, Ek] = g. l. b
xεEk

f(x) 

3.10. Definition.  By a measurable partition of E we mean a finite collection P = {E1, E2, …, En} of 

measurable subsets of E such that 

⋃Ek = E

n

k=1

 

And such that m(Ej ∩ Ek) = 0 (j, k = 1,2, … , n , j ≠ k) 

The sets E1 , E2 ,…,En are called the components of P. 

If P and Q are measurable partitions, then Q is called a refinement of P if every component of Q is 

wholly contained in some component of P. 

Thus a measurable partition P is a finite collection of subsets whose union is all of E and whose 

intersections with one another have measure zero. 

3.11. Definition. Let f be a bounded function on E and let P={ E1 , E2 ,…,En} be any measurable 

partition E. we define the upper sum U[f, P] as  

U[f;  P]  =  ∑M[f; Ek ].mEk

n

k=1

 

Similarly, we define the lower sum L[f; P] as 

L[f;  P]  =  ∑m[f; Ek ]. mEk

n

k=1

 

As in the case of Riemann integral, we can see that every upper sum for f is greater than or equal to 

every lower sum for f. 

We then define the Lebesgue upper and lower integral of a bounded function f on E by  

inf
P
U[f;  P] and sup

P
L[f;  P]   
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Respectively taken over all measurable position of E. We denote them respectively by  

∫ f  and ∫ f

 

E̅

−

E

 

3.12. Definition. We say that a bounded function f on E is Lebesgue integrable on E if  

∫ f  and ∫ f

 

E̅

−

E

 

Also we know that if  ψ is a simple function, then  

∫ψ

 

E

= ∑akmEk

n

k=1

 

Keeping this in mind, we see that  

∫ f = inf∫ ψ(x)dx

−

E

−

E

 

For all simple functions ψ(x) ≥ f(x). Similarly  

∫ f =  sup
 
∫ϕ(x)dx

 

E̅

 

E̅

 

For all simple functions ϕ(x) ≤ f(x). 

Now we use the theorem : 

“ Let f be defined and bounded on a measurable set E with mE finite. In order that  

inf
f≤ψ
∫ψ(x)dx

 

E

= sup
f≥ϕ

∫ϕ(x)dx

 

E

 

for all simple functions ϕ and ψ, it is necessary and sufficient that f is measurable.” 

And our definition of  Lebesgue integration takes the form :  

“ If f is a bounded measurable function defined on a measurable set E with mE finite , we define the 

(Lebesgue) integral of f over E by  

∫ f(x)dx = inf∫ψ(x)dx

 

E

 

E

 

for all simple functions ψ ≥ f.” 

The following theorem shows that the Lebesgue integral is in fact a generalization of the Riemann 

integral.  
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3.13. Theorem. Let f be a bounded function defined on [a,b]. If f is Riemann integrable on [a, b], then it 

is measurable and  

R∫ f(x)dx = ∫ f(x)

b

a

b

a

 

Proof .  Since f is a bounded function defined on [a, b] and is Riemann integrable, therefore,  

R∫ f(x)dx = inf
ϕ≥f

∫ϕ(x)dx

b

a

b̅

a

 

and  

R∫ f(x)dx = sup
ψ≤f

∫ψ(x)dx

b

a

b

a

 

for all step functions ϕ and ψ and then  

   

R∫ f(x)dx = R∫ f(x)dx

b

a

b̅

a

 

                        ⇒ inf
ϕ≥f

∫ ϕ(x)dx
b

a
= sup

ψ≤f
∫ ψ(x)dx
b

a
                                  (i) 

Since every step function is a simple function, we have  

R∫ f(x)dx

b

a

= sup
ψ≤f

∫ψ(x)dx

b

a

 ≤  inf
ϕ≥f

∫ϕ(x)dx

b

a

= R∫ f(x)dx

b

a

 

Then (i) implies that  

sup
ψ≤f

∫ψ(x)dx

b

a

= inf
ϕ≥f

∫ϕ(x)dx

b

a

 

and this implies that f is measurable also. 

3.14. Comparison of Lebesgue and Riemann integration  

(1) The most obvious difference is that in Lebesgue’s definition we divide up the  interval into subsets 

while in the case of Riemann we divide it into subintervals. 

(2)  In both Riemann’s and Lebesgue’s definitions we have upper and lower sums which tend to limits. 

In Riemann case the two integrals are not necessarily the same and the function is integrable only if 

they are same. In the Lebesgue case the two integrals are necessarily the same, their equality being 

consequence of the assumption that the function is measurable. 
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(3) Lebesgue’s definition is more general than Riemann. We know that if function is the R- integrable 

then it is Lebesgue integrable also, but the converse need not be true. For example the characteristic 

function of the set of irrational points have Lebesgue integral but is not R- integrable. 

Let χ be the characteristic function of the irrational numbers in [0,1]. Let E1 be the set of irrational 

number in [0,1], and let E2 be the set of rational number in [0,1]. Then P = [E1, E2] is a measurable 

partition of (0,1]. Moreover, χ is identically 1 on E1 and χ is identically 0 on E2 . Hence M[χ, E1] = 

m[χ, E2] = 1 , while M[χ, E1] = m[χ, E2] = 0. Hence U[χ, P] = 1.m E1 + 0.m E2 = 1. Similarly L[χ, P] 

= 1.m E1 + 0.M E2 = 1. Therefore, U[χ, P] = L[χ, P] . 

For Riemann integration  

M[χ,J] = 1 , m[χ,J] = 0  

for any interval J ⊂ [0,1] 

∴ U[χ, J] = 1, L[χ, J] = 0 . 

∴ The function is not Riemann- integrable. 

3.15. Theorem. If f and g are bounded measurable functions defined on a set E of finite measure, then  

(i) ∫ af = a∫ f
 

E

 

E
 

(ii) ∫ (f + g) = ∫ f + ∫ g
 

E

 

E

 

E
  

(iii) If f ≤ g a. e. , then ∫ f
 

E
 ≤ ∫ g

 

E
 

(iv) If f = g a. e. , then ∫ f
 

E
= ∫ g

 

E
 

(v) If A ≤ f(x) ≤ B, then  AmE ≤  ∫ f
 

E
 ≤ BmE. 

(vi) If A and B are disjoint measurable set of finite measure, then ∫ f = ∫ g
 

A
+ ∫ f

 

B

 

A∪B
 

Proof. We know that if ψ is a simple function then so is a ψ. 

Hence  ∫ af = inf
ψ≥f
∫ aψ
 

E
= a inf

ψ≥f
∫ ψ
 

E

 

E
= a∫ f

 

E
   

Which proves (i). 

To prove (ii) let ε denote any positive real number. These are simple functions ϕ ≤ f ,ψ ≥ f , ξ ≤

g and η ≥ g satisfying  

    ∫ϕ(x)dx >  ∫ f − ε

 

E

 

E

,            ∫ψ(x)dx <  ∫ f + ε

 

E

,

 

E

 

∫ ξ(x)dx >  ∫ g − ε

 

E

 

E

,                 ∫ η(x) < ∫g + ε,

 

E

 

 E

 

Since ϕ + ξ ≤ f + g ≤ ψ+ η ,  we have  

∫(f + g) ≥ ∫(ϕ + ξ)

 

E

= ∫ϕ

 

E

 

E

+∫ ξ > ∫ f + ∫g − 2ε

 

E

 

E

 

E

 

∫(f + g) ≤ ∫(ψ+ η)

 

E

= ∫ψ+∫ η <

 

E

 

E

 

E

∫ f + ∫g + 2ε

 

E

 

E
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Since these hold for every ε > 0, we have  

∫(f + g) = ∫ f

 

E

+ ∫ g

 

E

 

E

 

To prove (iii) it suffices to establish  

∫g − f

 

E

 ≥ 0 

For every simple function ψ ≥ g − f , we have ψ ≥ 0 almost everywhere in E. This means that ∫ ψ ≥ 0 
 

E
  

Hence we obtain  

∫(g − f) = inf
ψ≥(g−f)

∫ψ(x) ≥ 0                                            (1)

 

E

 

E

 

Which establishes (iii).  

Similarly we can show that  

∫(g − f) = sup
ψ≤(g−f)

∫ψ(x) ≤ 0                                    (2)

 

E

 

E

 

Therefore, from (1) and (2) the result (iv) follows. 

To prove (v) we are given that  

A ≤ f(x) ≤ B 

Applying (iv) we are given that  

∫ f(x)dx ≤ ∫Bdx = B∫dx = BmE

 

E

 

E

 

E

 

That is,     ∫ f ≤ BmE
 

E
 

Similarly we can prove that      ∫ f ≥ BmE
 

E
. 

Now we prove (vi). 

We know that χ
A∪B

= χ
A
+ χ

B
 

Therefore ,                      ∫ f
 

A∪B
= ∫  χ

A∪B
f =  ∫ f(

 

A∪B

 

A∪B
χ
A
+ χ

B
) 

= ∫ f

 

A∪B

χ
A
+ ∫ f

 

A∪B

χ
B

 

= ∫ f

 

A

+ ∫ f

 

B

 

Which proves the theorem. 
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3.16. Corollary.  If f and g are bounded measurable function then  

If  f(x) ≥ 0 on E then ∫ f
 

E
 ≥ 0  and  

If  f(x) ≤ 0 on E then ∫ f
 

E
 ≤ 0  . 

Proof : Let  ψ be a simple function such that ψ ≥ f 

Since f(x) ≥ 0 on E  ⇒ ψ ≥ 0 on E 

⇒ ∫ ψ
 

E
 ≥ 0   ⇒ Inf

ψ≥f
∫ ψ
 

E
 ≥ 0 i.e. ∫ f

 

E
 ≥ 0   

Similarly, Let ϕ be a simple function such that ϕ ≤ f. Since f(x) ≥ 0 on E 

 ⇒ ϕ ≤ 0 on E 

⇒ ∫ ϕ
 

E
 ≤ 0  ⇒ Sup

ϕ≤f
∫ ϕ
 

E
 ≤ 0 i.e.  ∫ f

 

E
 ≤ 0 

3.17. Corollary.  If m(E) = 0 , then ∫ f
 

E
= 0 

                                Or 

Integrals over set of measure zero are zero. 

Proof : Since f is bounded on E so there exist constant A and B such that  

A ≤ f(x) ≤ B 

⇒ A.m(E) ≤ ∫ f(x)dx

 

E

 ≤ B.m(E)    ∀ x ∈ E 

Since m(E) = 0 ⇒ ∫ f
 

E
= 0 

3.18. Corollary.   If f(x) = k a.e. on E then  ∫ f
 

E
= k.m(E) . In particular if f = 0 a.e. on E then ∫ f

 

E
= 0 

Proof : Since f(x) = k a.e on E then ∫ f
 

E
= 0 

3.19. Corollary.  If f = g a.e then ∫ f
 

E
= ∫ g

 

E
  but converse is not true. 

Proof : consider the functions 

f ∶ [−1,1] ⟶ R and g ∶ [1,1] ⟶ R 

as f(x) =  {
2 if x ≤ 0
0 if x > 0

  and g(x) =1     ∀ x  

Clearly f and g are bounded and measurable functions. 

⇒ f and g are lebesgue integrable on [-1,1] 

∫f(x)dx =  ∫ f(x)dx

0

−1

+ ∫ f(x)dx

1

0

1

−1

 

                                                             =  ∫ 2dx
0

−1
+ ∫ 0. dx

1

0
= 2  
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∫g(x)

1

−1

= ∫1dx

1

−1

= 1.m([−1,1]) =  1.2 = 2 

Therefore ∫ f
 

E
= ∫ g

 

E
 

But f ≠ g a.e on [-1,1] 

                                { ∵ m{x ∈ [−1,1] ; f ≠ g } = 2 ≠ 0 }  

Therefore f ≠ g a.e on E 

f and g are not equal even at a single point of [-1,1] as these are defined. 

3.20. Corollary. If f = 0 a.e on E then ∫ f
 

E
= 0 but converse is not true. 

Proof : Consider the function f : [-1,1] → R as f(x) =  {
  1  if x ≥ 0
−1 if x < 0 

 

∫f(x)dx = ∫ f(x)dx + ∫ f(x)dx 

1

0

0

−1

 

1

−1

 

                                                                 =  -1 + 1 = 0 

Clearly f ≠ 0 a.e as m{x ∈ [−1,1] ; f ≠ 0 } = m[−1,1] = 2 ≠ 0  

So converse is not true. 

3.21.Corollary.  If  ∫ f
 

E
= 0 and f ≥ 0 on E then f = 0 a.e. 

Proof : Suppose E has a subset A where f(x) > 0, 

i.e. A = ⋃ {x ∈ E ; f(x) >
1

n
}∞

x=1  

Let E1(n) = { x ∈ E  ; f(x) >
1

n
} 

If possible, suppose there is a positive integer N such that m(E1(N)) > 0. 

Then ∫ f
 

E
 ≥ ∫ f

 

E1(N)
 ≥

1

N
 m(E1(N)) > 0 

Which contradicts the fact that ∫ f
 

E
= 0 

Thus, m(E1(n)) = 0 for all n≥ 1. 

This proves the corollary. 

3.22. Corollary.  Let f be a bounded measurable function on a set of finite measure E. Then  

|∫ f
 

E
|  ≤ ∫ |f|

 

E
 

Proof : The function |f| is measurable and bounded  

Now -|f|  ≤ f ≤ |f| on E  
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By the linearity and monotonicity of integration, 

-|∫ f
 

E
|  ≤ ∫ f

 

E
≤ ∫ |f|

 

E
 

⇒ |∫ f
 

E
|  ≤ ∫ |f|

 

E
 

3.23. The Monotone Convergence Theorem  

 Let {fn} be an increasing sequence of non-negative measurable functions on E. If {fn} → f pointwise a.e 

on E, then lim
n→∞

∫ fn = ∫ f
 

E

 

E
 

Proof : Since {fn} is an increasing sequence  

So fn ≤ f a.e ∀ n 

⇒ lim ∫ fn ≤ ∫ f         … (1) 

Now by Fatou’s Lemma ∫ f  ≤ lim ∫ fn        … (2) 

From (1) and (2), we have  

lim ∫ fn =  lim ∫ f 

Hence the result . 

Case II  If f is a bounded function on E, then theorem is trivially true. Since in this case 

 |f(x)| ≤ M ∀ x ∈ E for some number M and thus ∈ > 0, one can choose a δ = (
∈

M
) > 0 for which m(A) 

< δ, then ∫ f ≤ M ∫ 1
 

A
= M.m(A) < ∈

 

A
. 

3.24. Remark : The technique used in above theorem helps us to evaluate the lebesgue integral of non-

negative bounded and unbounded functions. 

3.25. Example : Evaluate the Lebesgue integral of the function f : [0,1] → R  

f(x) = {
1
x
1
3⁄

⁄     if 0 < x ≤ 1

0     if x = 0
 

Clearly f is unbounded, non-negative function defined on [0,1]. Now define a sequence of functions {fn} 

on [0,1] as  

fn(x) = {
f(x)  if f(x) ≤ n
n       if n < 𝑓(𝑥)

 

i.e. fn(x) = {
f(x)  if x ≥

1

n3

n       if x <
1

n3

 

Clearly {fn} is increasing sequence of non-negative measurable functions such that fn→ f. So by 

monotone convergence theorem  
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∫f(x)dx =  lim
n→∞

∫fn(x)dx

1

0

1

0

 

                                                           = lim
n→∞

[∫ fn(x)dx + ∫ fn(x)dx
1
1
n3⁄

1
n3⁄

0
] 

                                                                                 =  lim
n→∞

[
 
 
 
∫ ndx + ∫ f(x)dx

1

1
n3⁄

1
n3⁄

0 ]
 
 
 
 

                                                                                 = lim
n→∞

[[nx]0

1
n3 ⁄
+ ∫ x

−1
3⁄ dx

1

1
n3⁄

] 

                                                                                  = lim
n→∞

[n.
1

n3
+ 
3

2
(1 −

1

n2
)] 

                                                                                  = 0 +
3

2
=
3

2
 

3.26. Theorem(Lebesgue Bounded Convergence Theorem). Let  < fn > be a sequence of measurable 

functions defined on a set E of finite measure and suppose that  < fn > is uniformly bounded, that is , 

there exist a real number M such that |fn(x)| ≤ M for all n ε N and for all x ε E . If lim
n→∞

fn(x) = f(x) for 

each x in E, then  

∫ f

 

E

= lim
n→∞

∫ fn  

 

E

. 

Proof. We shall apply Egoroff’s theorem to prove this theorem. Accordingly for a given ε > 0, there is 

an N and a measurable set E0 ⊂ E such that mE0
c <

ϵ

4M
 and for n ≥ N and x ε E0 we have  

|fn(x) − f(x)| <  
ϵ

2m(E)
 

|∫ fn − ∫ f

 

E

 

E

| = |∫(fn − f)

 

E

| ≤ ∫|fn − f|

 

E

 

= ∫|fn − f| + ∫|fn − f|

 

E0
c

 

E0

 

< 
ϵ

2m(E)
.m(E0) +

ϵ

4M
2M 

<
ϵ

2
+
ϵ

2
= ϵ. 

Hence   

∫ fn → ∫ f

 

E

 

E
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3.27. Remark : Bounded Convergence Theorem need not be true in Riemann integral . 

3.28. Example : Let {ri} be a sequence of all rational numbers in [0,1]. 

Define Sn = {ri ∶ i = 1,2, … , n} , n ∈ N 

 and for each n ∈ N, consider the function fn(x) = {
1 if x ∈ Sn
0 if x ∉ Sn

= {r1, r2, … , rn} 

clearly each fn is bounded, also fn is discontinuous at n-points in [0,1] namely points of Sn 

i.e., r1, r2, … , rn .  

At x = r1  

lim
x→r1

−
fn(x) ≠ fn(r1) ≠ lim

x→r1
+
fn(x) 

Hence Riemann integrable on [0,1] 

[∵ A function is Riemann integrable, if it is continous except at a finite number of discontinuity] 

Now we have proved that  

lim
n→∞

R∫ fn(x)dx ≠ R∫ lim
n→∞

fn(x)dx

1

0

 

⇒ R∫ fn(x)dx =  ∫ fn(x)dx =  ∫ fn(x)dx

 

Sn∪Sn
c  

1

0

1

0

 

{ ∵ Sn ∪ Sn
c = [0,1] } 

= ∫ fn(x)dx + ∫ fn(x)dx

 

Sn
c

 

Sn

 

= ∫1 dx

 

Sn

+ ∫0 dx

 

Sn
c

= 1.m(Sn) =  0 

[∵ {Sn}sequence of rationals m(Sn) = 0] 

⇒ lim
n→∞

R∫ fn(x)dx = 0

1

0

 

Clearly {fn} is convergent to f when f is defined as  

f(x) =  {
1 if f is rational in [0,1]
0 if f is irrational in [0,1]

 

  and f is not Riemann – integrable on [0,1]  

⇒ R∫ f(x)dx  does not exists .

1

0
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lim
n→∞

∫fn(x)dx ≠ R ∫ lim
n→∞

fn(x)dx

1

0

1

0

  

So bounded convergence theorem does not hold in Riemann integral . 

The integral of a non-negative function 

3.29. Definition. If f is a non-negative measurable function defined on a measurable set E, we define  

∫ f

 

E

= sup
h≤f

∫h

 

E

 , 

Where h is a bounded measurable function such that m{x|h(x) ≠ 0} is finite. 

3.30. Theorem. If f and g are non-negative measurable functions, then  

(i) ∫ cf
 

E
= c∫ f > 0

 

E
 

(ii) ∫ (f + g) = ∫ f + ∫ g
 

E

 

E

 

E
 and 

(iii) If f ≤ g a. e. , then 

∫ f ≤ ∫g

 

E

 

E

 

 Proof. The proof of (i) and (iii) follow directly from the theorem concerning properties of the integrals 

of bdd functions. 

We prove (ii) in detail. 

If h(x) ≤ f(x) and k(x) ≤ g(x), we have  h(x) + k(x) ≤ f(x) + g(x), and so  

∫(h + k) ≤ ∫(f + g)

 

E

 

E

 

i.e.           ∫ h
 

E
+ ∫ k ≤ ∫ (f + g)

 

E

 

E
 . 

Taking suprema, we have  

(iv) ∫ f + ∫ g ≤ ∫ (f + g)
 

E

 

E

 

E
 

On the other hand, let ℓ be a bounded measurable function which vanishes outside a set finite measure 

and which is not greater than (f + g). Then we define the functions h and k by setting  

                        h(x) = min (f(x), ℓ(x))  

and                  k(x) = ℓ(x) − h(x) 

we have                                                h(x) ≤ f(x),  

 k(x) ≤ g(x) 

 while h and k are bounded by the bound ℓ and vanish where ℓ vanishes. Hence  
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∫ℓ

 

E

= ∫h + ∫k

 

E

 

E

≤ ∫ f + ∫g

 

E

 

E

 

And so taking supremum, we have 

sup
ℓ≤f+g

∫ℓ

 

E

≤ ∫ f + ∫g

 

E

 

E

 

That is,  

(v) ∫ f + ∫ g
 

E

 

E
≥ ∫ (f + g)

 

E
  

From (iv) and (v), we have  

∫(f + g) = ∫ f + ∫g

 

E

 

E

 

E

 

3.31. Fatou’s lemma. If < fn >is a sequence of non-negative measurable functions and fn(x) → f(x) 

almost everywhere on a set E, then  

∫ f ≤

 

E

lim ∫ fn

 

E

 

Proof. Let h be a bounded measurable function which is not greater than f and which vanishes outside a 

set E’ of finite measure. Define a function hn by setting  

hn(x) = min{h(x), fn(x)} 

Then hn is  bounded but bounds for h and vanishes outside E’ . Now hn(x) →h(x) for each x in E’ .  

Therefore by “Bounded Convergence theorem” we have  

∫h = ∫h = lim
 
∫hn

 

E′

 

E′

 ≤

 

E

lim ∫ fn

 

E

 

Taking the supremum over h, we get  

∫ f 

 

E

≤ lim ∫ fn

 

E

 

3.32. The inequality in Fatou’s lemma may be strict  

Consider a sequence {fn} defined on R as  

fn(x) = {         
1 if x ∈ [n, n + 1]        E1  
0    otherwise             E2

 

Clearly sequence {fn} is sequence of non – negative measurable funcyions defined on R and  

lim
n→∞

fn = f where f = 0  ⇒  ∫ f = 0
 

R
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Also                                            ∫ fn = ∫ fn = ∫ fn + ∫ fn 
 

E2

 

E1

 

E1⋃E2

 

R
 

                                                                             = ∫ 1 + 0 = m(E1) = 1
 

E1
 

⇒ lim 
 
∫ fn 
 

R
= 1 and  we know that 0 < 1  

So ∫ f <
 

R
lim ∫ fn 

 

R
 

 3.33. Fatou’s lemma need not good unless the function fn is non – negative  

Let us consider the function fn(x) = { 
−n if 

1

n
 ≤ x ≤

2

n
               E1

0 otherwise                         E2
               

Hence lim
n→∞

fn(x) = f(x) = 0 a.e  ⇒ ∫ f(x)dx = 0
1

0
 

Also      ∫ fn(x)dx =  ∫ fn(x)dx + ∫ fn(x)dx
 

E2

 

E1

1

0
  

                                 =∫ −n dx + 0 =  −1
2
n⁄

1
n⁄

 

Thus  lim ∫ fn(x)dx =  −1 
1

0
 

⇒ ∫f(x)dx ≰ lim 

1

0

∫ fn(x)dx

1

0

 

3.34. Theorem( Lebesgue Monotone Convergence theorem). Let <  fn  >  be an increasing sequence of 

non negative measurable functions and let f = lim fn . Then  

∫f = lim∫ fn

 

 

 

Proof. By Fatou’s Lemma we have  

∫ f 

 

 

≤ lim ∫ fn

 

 

 

But for each n we have fn  ≤ f , son ∫𝑓𝑛 ≤ ∫𝑓. But this implies  

𝑙𝑖𝑚 ∫ 𝑓 ≤ ∫𝑓 

Hence  

∫𝑓 = 𝑙𝑖𝑚∫𝑓𝑛 

3.35. Definition.  A non-negative measurable functions f is called integrable over the measurable over 

the measurable set E if  

∫𝑓

 

𝐸

<  ∞ 
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3.36. Theorem. Let f and g be two non-negative measurable functions. If f is integrable over E and 

g(x)<f(x) on E, then g is also integrable on E, and  

∫(𝑓 − 𝑔)

 

𝐸

= ∫𝑓 − ∫𝑔

 

𝐸

 

𝐸

 

Proof. Since   ∫ 𝑓
 

𝐸
= ∫ (𝑓 − 𝑔) + ∫ 𝑔

 

𝐸

 

𝐸
 

and the left hand side is finite, the term on the right must also be finite and so g is integrable.  

3.37. Theorem.  Let f be a non-negative function which is integrable over a set E. The given 𝜀 > 0 there 

is a 𝛿 > 0 such that for every set 𝐴 ⊂ 𝐸 with 𝑚𝐴 < 𝛿 we have      

 ∫ 𝑓 <  𝜀
 

𝐴
 

Proof. If |𝑓| ≤ 𝐾, then   ∫ 𝑓 ≤  ∫ 𝐾 = 𝐾𝑚𝐴
 

𝐴

 

𝐴
 

Set 𝛿 <
𝜖

𝐾
   Then  ∫ 𝑓

 

𝐴
< 𝐾.

𝜖

𝐾
=  𝜖 . 

Set fn(x) = f(x) if f(x) ≤ n and fn(x) = n otherwise. Then each fn is bounded and fn converges to f at each 

point. By the monotone convergence theorem there is an N such that   ∫ 𝑓𝑁 > ∫ 𝑓
 

𝐸

 

𝐸
−

𝜖

2
  𝑎𝑛𝑑 ∫ (𝑓 − 𝑓𝑁) <  

𝜖

2

 

𝐸
 . 

Choose 𝛿 <
𝜖

2𝑁
 . If mA < 𝛿  , we have  

∫𝑓

 

𝐴

= ∫(𝑓 − 𝑓𝑁)

 

𝐴

+ ∫𝑓𝑁 

 

𝐴

 

                   <  ∫(𝑓 − 𝑓𝑁) + 𝑁𝑚𝐴

 

𝐸

            

                                                                                    (𝑠𝑖𝑛𝑐𝑒 ∫𝑓𝑁

 

𝐴

≤ ∫𝑁 = 𝑁𝑚𝐴 )

 

𝐴

            

<
𝜖

2
+
𝜖

2
=  𝜖  . 

3.38. The General Lebesgue Integral  

We have already defined the positive part 𝑓+ and negative part 𝑓− of a function as  

𝑓+ = 𝑚𝑎𝑥(𝑓, 0) 

𝑓 = 𝑚𝑎𝑥(−𝑓, 0) 

Also it was shown that  

𝑓 = 𝑓+ − 𝑓 

|𝑓| = 𝑓+ + 𝑓 

With these notions in mind, we make the following definition. 
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3.39. Definition. A measurable function f is said to be integrable over E if  𝑓+ and 𝑓 are both integrable 

over E. In this case we define  

∫𝑓 =  ∫𝑓+ − ∫𝑓

 

𝐸

 

𝐸

 

𝐸

 

3.40. Theorem. Let f and g be integrable over E. Then  

(i) The function f+g is integrable over E and  

∫(𝑓 + 𝑔) =  ∫𝑓 + ∫𝑔

 

𝐸

 

𝐸

 

𝐸

 

(ii) If 𝑓 ≤ 𝑔 𝑎. 𝑒.,  then  

∫𝑓 ≤ ∫𝑔

 

𝐸

 

𝐸

 

(iii) If  A and B are disjoint measurable sets contained in E, then  

∫ 𝑓 = ∫𝑓

 

𝐴

 

𝐴∪𝐵

+ ∫𝑓

 

𝐵

 

Proof. By definition, the function 𝑓+ , 𝑓 , 𝑔+, 𝑔  are all integrable. If ℎ = 𝑓 + 𝑔, then ℎ = (𝑓+−, 𝑓) +

(𝑔+ − 𝑔) and hence ℎ = (𝑓+ + 𝑔+) − (𝑓 + 𝑔) . Since 𝑓+ + 𝑔+ and  𝑓 + 𝑔 are integrable therefore 

their difference is also integrable. Thus h is integrable.  

We then have  

∫ℎ =

 

𝐸

∫[(𝑓+ + 𝑔+) − ( 𝑓 + 𝑔  )]

 

𝐸

 

         = ∫(𝑓+ + 𝑔+) − ∫( 𝑓 + 𝑔  )

 

𝐸

 

𝐸

 

          = ∫𝑓+ + ∫𝑔+ − ∫𝑓

 

𝐸

 

𝐸

 

𝐸

− ∫𝑔 

 

𝐸

 

= (∫𝑓+ − ∫𝑓 ) + (∫𝑔+
 

𝐸

− ∫𝑔  )

 

𝐸

 

𝐸

 

𝐸

 

That is,   ∫ (𝑓 + 𝑔) =  ∫ 𝑓 + ∫ 𝑔
 

𝐸

 

𝐸

 

𝐸
 

Proof of (ii) follows from part (i) and the fact that the integral of a non-negative integrable function is 

non-negative.  

For (iii) we have  ∫ 𝑓
 

𝐴∪𝐵
= ∫ 𝑓𝜒𝐴∪𝐵
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 =  ∫ 𝑓𝜒𝐴

 

 

+∫𝑓𝜒𝐵 = ∫𝑓

 

𝐴

+ ∫𝑓

 

𝐵

 

∗It should be noted that f+g is not defined at points where f = ∞ and g = −∞ and where f = −∞ and  

g  = ∞ . However, the set of such points must have measure zero, since f and g are integrable. Hence the 

integrability and the value of ∫(𝑓 + 𝑔) is independent of the choice of values in these ambiguous cases. 

3.41. Theorem.  Let f be a measurable function over E. Then f is integrable over E iff |𝑓| is integrable 

over E. Moreover, if f is integrable, then  

|∫ 𝑓

 

𝐸

| =  ∫|𝑓|

 

𝐸

 

Proof. If f is integrable then both 𝑓+ and 𝑓−  are integrable. But |𝑓| = 𝑓+ + 𝑓− . Hence integrability of 

𝑓+ and 𝑓− implies the integrability of |𝑓|. 

Moreover, if f is integrable, then since  𝑓(𝑥) ≤ |𝑓(𝑥)| = |𝑓|(𝑥) , the property which states that if 𝑓 ≤ 𝑔 

a.e. , then ∫𝑓 ≤ ∫𝑔 implies that  

∫𝑓 ≤ ∫|𝑓|                                                                    (𝑖) 

On the other hand since −𝑓(𝑥) ≤ |𝑓(𝑥)| , we have  

                           − ∫ 𝑓 ≤ ∫|𝑓|                                                                    (𝑖𝑖)      . 

From (i) and (ii)  

Conversely, suppose f is measurable and suppose |𝑓| is integrable. Since  

0 ≤ 𝑓+(𝑥) ≤ |𝑓(𝑥)| 

It follows that 𝑓+ is integrable. Similarly 𝑓− is also integrable and hence f is integrable. 

3.42. Lemma. Let f be integrable . Then given 𝜀 > 0 there exist 𝛿 > 0  such that |∫ 𝑓
 

𝐴
| < 𝜖  whenever 

A is measurable function f we have = 𝑓+ − 𝑓− . So by that we have proved already, given > 0 , there 

exist 𝛿1 > 0 such that  

∫𝑓+
 

𝐴

< 
𝜀

2
 . 

When mA<𝛿1. Similarly there exists 𝛿2 > 0 such that  

∫𝑓−
 

𝐴

< 
𝜀

2
 , 

When mA<𝛿2. Thus if mA < 𝛿 = min (𝛿1, 𝛿2) , we have  

|∫ 𝑓
 

𝐴
|  ≤ ∫ |𝑓| =  ∫ 𝑓+ + ∫ 𝑓− < 

𝜀

2
+

𝜀

2

 

𝐴

 

𝐴

 

𝐴
= 𝜀   

This completes the proof. 
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3.43. Theorem (Lebesgue Dominated Convergence Theorem) Let a sequence < fn > , 𝑛 𝜀 𝑁 of 

measurable functions be dominated by an integrable function g, that is  

|𝑓𝑛(𝑥)|  ≤ 𝑔(𝑥) 

Holds for every 𝑛 𝜀 𝑁 and every 𝑥 𝜀 𝑁  and let < fn > converges pointwise to a function f, that is , f(x) = 

𝑙𝑖𝑚
𝑛→∞

𝑓𝑛(𝑥) for almost all x in E. Then  

∫𝑓 = 𝑙𝑖𝑚
𝑛→∞

∫𝑓𝑛

 

𝐸

 

𝐸

 

Proof. Since |𝑓𝑛| ≤ 𝑔 for every 𝑛 𝜀 𝑁 and f(x) = 𝑙𝑖𝑚
𝑛→∞

𝑓𝑛(𝑥), we have |𝑓| ≤ 𝑔 . Hence fn and f are 

integrable. The function g – fn is non-negative, therefore by Fatou’s Lemma we have  

∫𝑔 − ∫𝑓

 

𝐸

= ∫(𝑔 − 𝑓)

 

𝐸

 ≤  𝑙𝑖𝑚

 

𝐸

∫(𝑔 − 𝑓𝑛)

 

𝐸

 

= ∫𝑔 − 𝑙𝑖𝑚

 

𝐸

∫𝑓𝑛

 

𝐸

 

Whence    ∫ f
 

E
 ≥ lim∫ fn

 

E
 

Similarly considering g + fn we get  

∫ f

 

E

 ≤ lim∫ fn

 

E

 

Consequently, we have   ∫ f =  lim∫ fn
 

E

 

E
 




